Package: CTD 1.3
CTD: A Method for 'Connecting The Dots' in Weighted Graphs
A method for pattern discovery in weighted graphs as outlined in Thistlethwaite et al. (2021) <doi:10.1371/journal.pcbi.1008550>. Two use cases are achieved: 1) Given a weighted graph and a subset of its nodes, do the nodes show significant connectedness? 2) Given a weighted graph and two subsets of its nodes, are the subsets close neighbors or distant?
Authors:
CTD_1.3.tar.gz
CTD_1.3.zip(r-4.5)CTD_1.3.zip(r-4.4)CTD_1.3.zip(r-4.3)
CTD_1.3.tgz(r-4.4-any)CTD_1.3.tgz(r-4.3-any)
CTD_1.3.tar.gz(r-4.5-noble)CTD_1.3.tar.gz(r-4.4-noble)
CTD_1.3.tgz(r-4.4-emscripten)CTD_1.3.tgz(r-4.3-emscripten)
CTD.pdf |CTD.html✨
CTD/json (API)
NEWS
# Install 'CTD' in R: |
install.packages('CTD', repos = c('https://vpetrosyan.r-universe.dev', 'https://cloud.r-project.org')) |
- Miller2015 - Miller et al.
- Thistlethwaite2020 - Thistlethwaite et al.
- Wangler2017 - Wangler et al.
- cohorts_coded - Disease cohorts with coded identifiers
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:8ced1dbae4. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | OK | Nov 15 2024 |
R-4.5-linux | OK | Nov 15 2024 |
R-4.4-win | OK | Nov 15 2024 |
R-4.4-mac | OK | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports:data.combineDatadata.imputeDatadata.surrogateProfilesdata.zscoreDatagraph.connectToExtgraph.diffuseP1graph.diffusionSnapShotgraph.naivePruninggraph.netWalkSnapShotmle.getEncodingLengthmle.getMinPtDistancemle.getPtBSbyKmle.getPtDistmultiNode.getNodeRankssingleNode.getNodeRanksNstat.entropyFunctionstat.fishersMethodstat.getDirSim
Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs